You're describing a molecule with a rather complex chemical name, but its structure and importance can be understood by breaking it down:
**1-[4-methyl-2-[2-(4-methylphenoxy)ethylamino]-5-thiazolyl]ethanone**
Let's analyze the components:
* **Ethanolamine (HO-CH2-CH2-NH2)** is a common building block in organic chemistry.
* **4-methylphenoxy** refers to a phenol group (a benzene ring with a hydroxyl group) with a methyl group at the 4th position.
* **Thiazole** is a heterocyclic compound containing a sulfur atom and a nitrogen atom in a five-membered ring.
* **Ethanone** is a simple ketone group (C=O) with a two-carbon chain.
**Putting it together:**
This molecule is a modified thiazole derivative. The thiazole ring is substituted at positions 2 and 5. At position 2, it has a long chain containing a 4-methylphenoxy group and an ethanolamine-like structure. Position 5 is substituted with an ethanone group.
**Importance in Research:**
There's no readily available information on the specific molecule you've named and its research importance. However, thiazoles are known to have a variety of biological activities, including:
* **Antimicrobial properties:** Thiazole derivatives have been explored for their potential as antibacterial, antifungal, and antiviral agents.
* **Anti-inflammatory effects:** Some thiazoles show promising activity in reducing inflammation.
* **Anti-cancer agents:** Their ability to interfere with cell growth and proliferation has been investigated.
* **Neuroprotective effects:** Research suggests that certain thiazoles might protect nerve cells from damage.
**To determine the exact significance of the specific compound you mentioned, more information is needed:**
* **Its synthesis and characterization:** How was it made, and what are its physical and chemical properties?
* **Its biological activity:** What effects does it have on cells, tissues, or organisms?
* **Its potential applications:** Is it being investigated for any specific medical or industrial use?
You can try searching for more detailed information on the molecule by using its full chemical name or its IUPAC name (if available) in scientific databases and research journals.
ID Source | ID |
---|---|
PubMed CID | 1980098 |
CHEMBL ID | 1383265 |
CHEBI ID | 115684 |
Synonym |
---|
HMS2615P19 |
MLS000663779 |
smr000292297 |
1-(4-methyl-2-{[2-(4-methylphenoxy)ethyl]amino}-1,3-thiazol-5-yl)ethanone |
CHEBI:115684 |
1-[4-methyl-2-[2-(4-methylphenoxy)ethylamino]-1,3-thiazol-5-yl]ethanone |
AKOS001671515 |
STL336220 |
CHEMBL1383265 |
1-[4-methyl-2-[2-(4-methylphenoxy)ethylamino]-5-thiazolyl]ethanone |
Q27198033 |
Class | Description |
---|---|
thiazoles | An azole in which the five-membered heterocyclic aromatic skeleton contains a N atom and one S atom. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 31.6228 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 37.9330 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
BRCA1 | Homo sapiens (human) | Potency | 12.5893 | 0.8913 | 7.7225 | 25.1189 | AID624202 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 9.1962 | 0.0041 | 10.8903 | 31.5287 | AID504466 |
TDP1 protein | Homo sapiens (human) | Potency | 17.5886 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 50.1187 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 89.1251 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
parathyroid hormone/parathyroid hormone-related peptide receptor precursor | Homo sapiens (human) | Potency | 70.7946 | 3.5481 | 19.5427 | 44.6684 | AID743266 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 5.0119 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
histone-lysine N-methyltransferase 2A isoform 2 precursor | Homo sapiens (human) | Potency | 89.1251 | 0.0103 | 23.8567 | 63.0957 | AID2662 |
lethal(3)malignant brain tumor-like protein 1 isoform I | Homo sapiens (human) | Potency | 0.1000 | 0.0752 | 15.2253 | 39.8107 | AID485360 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 50.1187 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |